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Some problems of optimal damping theory are considered. It is shown that these problems 

can be stated in the form of the variational problem of optimel systems syntbesis. The net- 
essary steady-state condition and the necessary condition for a strong minimum of the func- 
tional for the variational problem of optimal damper synthesis are described. Sample compu- 
tations of dampers for systems with one degree of freedom are carried out. 

1. The equation of a dampable mass with one degree of freedom can be written as fol- 
lows [ 11: 

2” + U (2, CC’, t) = f (t) (1.1) 

Here x is the generalized coordinate of the system, fit) is the specified external force, 
and u&u, u’, t) is a function representing the damper characteristic. This function is usually 
subject to the limitation 

1 u (5 5.9 G I < uo (1.2) 
Let us consider the segment [to, T], the initial conditions 

2 (to) = 20, 2 (to) = 2.i) (1.3) 

and the functional 

J=maxjx(t)/ (t E l&t Tl) (1.4) 

The optimal damping problem can be formulated as follows: from among the functions x(i) 
and U(X, x’, t) satisfying Eq. (1.1) and inequality (1.2) on the segment [to, T] and conditions 
I:.:; at the left-hand end of this segment we are to find those which minimize functional 

‘Since the condition(*) 

Xc’@*) = O,<, r* E iro, TI (1.5) 

isolates the extremal points of the function z(i), rnstead of Expression (1.4) we can consi- 
der the functional 

J = P (ti) (1.6) 
‘h above problem then assumes a form which is a special case of tbe following general 

problem of synthesis of optimal systems whose functional depend on intermediate coordinate 
values [!j. 

From among tbe vector-fuaetions x(g) = {z ft) 

vector functions i& :I = b I(s, t),..., u, X, ( AI 
,..., s ftf] and from the piecewise-continuous 
satisfying the differantial equations 

g,=Q--f&(Z) U, t>=o (x=l, . . ..a) (1.7) 

and the finite relations 

\TK=Y*(U,t)=O tk=i,...,r<m) (1.8) 
on the segment ito, ~1 and the conditions (1.9) 

cpz = % [=(to), to, z(&), $1,. . .,X(T), T] = 0 (1 = f,..., P<Gz+wn+f)-ff) 
at the ends ad intermediate points t = + (I = ‘l,..., 9 - 1) of this segment, we are to find 
those which minimize the functional 

l ) The case where r’(t) = 0 on the segment [tt, tz] requires special consideration 
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to 

J = g [J: (to), to, x(h), h, . - * 9 3”(T), Tl fjfo@, u, t)dt (1.10) 

to 
This problem differs from that of constmcting optimal processes in that we are required 
find optimal laws n(z, t) rather than u(t). 

2. The necessary steadystate conditi;,fo;t$ functional I is of the form 121 

(2.1) 

Here hr denotes the total variation of the functional I represented by the relation 

(2.2) 

where ha (z, r), c(~(z, t1, p, are indefinite Lagrange multipliers. In computing the variation 
AI one must take account of the dependence of the functions u,(x, t), xa(%, t), ~(k& t) on 
the coordinates x,. Then, for example, the total variation Auk of the control a& r) can be 
written as 

n au 

where &k represents the partial variation of the function uk. 
Carrying out the manipulations and discussion typical of the calculus of variations 131, 

we obtain the steady-state condition in expanded form. It consists 
of the partial differential equations 

n a, 
~+m~l~f.+j$=o (s=l,...,n) 

of the relations 
l3H 
au,= 0 (k = 1, . . ., m) 

(2.41 

(2.5) 

of the end conditions 

$ + (H),@ = 0, (h,),- -?l!- = 0 
ax, (to) 

(s=l,...,n) (2.6) 

$&((H),=O, 
acp 

(% + Q@ = 
0 

of the Erdmann-Weierstrass conditions for the discontinuity points t = t* of the parameters 
of the control an(t) 

(Q-o - (H)*.+o = 0, (U,*_, - (Q.+u = 0 (s = 1, . . ., A) (2.7) 

and of the Erdmann-Weierstrass conditions at the points t = tt, 

$ - (H)$_, + (H),*+o = 0, (+(_I - (U**+o + & = 0 
i 

(i = 1, . . ., q-i;s=i,...,n) (2.8) 

In constructing the optimal functions u,(z, t) it is also necessary to make use of Eqs. 

(1.7) and (1.81, the conditions of continuity of the coordinates 

x* (t’- 0) -211(t*+0)=0, 2,(t*-0)-2,(ti+0)=o 

(s=i, . . . . n; i=l,. .., q--1) (2.9) 
and Eqs. (1.9). In order for the necessary Weierstrass condition of a strong minimum of the 
functional I to be fnlfilled, one must guarantee fulfillment of the steady-state condition and 
the Weierstrass inequality; the latter takes the form 

H (2, u, A, P, t) > H (x, u, A, P, 0 
(2.10) 
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Here U(X, :) are functions which minimize the functional I, while U(X, L) f u(x, t) are any 

admissible functions. 
Comparison of Eqs. (2.4) with the corresponding equations of the system he’+ JH/cJx, 

used in the construction of optimal processes [2] shows that in solving the synthesis prob- 
lem we are obliged to deal with partial differential equations whose characteristics are 
curves satisfying the equations of the variational problem of optimal process construction. 

In the case where the functions f and (pk do not depend on time explicitly, the controls 
+ and multipliers A, and pk must afso be found in the form of time-independent functions. 
Eqs. (2.4) then become 

(s -- 1,. . ., n) (2.11) 

Eqs. (2.4) or (2.11):: also be used in solving problems of synthesis of optimal systems 
described by equations with discontinuous right-hand sides or of systems with bounded co- 
ordinates. The only difference occurs’in relations (2.8). The corresponding conditions are 
given in 14 and 51. 

3. Let us consider the problem of optimal damping of a mass with one degree of freedom 
We assume that an instantaneous pulse is.applied to the mass at the initial instant t = tu = 
X 0. Then in Eq. (1.1) we have f- 0, and the initial conditions can be written as x(O) = 0, 
x’(O)= Xo’. On introducing the notation zI = x, x1 = x’, instead of (1.1) we have 

. 
21 = 3, x2‘ = - u (3.1) 

while the initial conditions take the form 

21 (0) = 0, x2 (0) = 220 ("io = 20') (3.2) 

We convert to an open range of admissible variations of the controls by constructing the 
relation 

$ = us + us - uus = 0 (3.3) 

which contains the additional parameter u. 
The optimal damping problem will now be considered in two formulations. In the first of _- 

these the functionaiis written in the form 

J = x: (T) 

and fulfillment of the Eq. 

is required. 

2, (T) = 0 

Here we seek the minimum of the extremnm of the function xl(t) for L S[t,,, 
condition that no limitations are imposed on the motion of the system after the 
been attained. 

The second formulation is based on the functional 

J = xl2 (tl) 
and fulfillment of the conditions 

x2 (&) = Zl (T) = 22 (T) = 0 

(3.4) 

(3.5) 

T] under the 
extremnm has 

(3.6) 

(3.7) 

is required. 
Upon termination of tbe process the system must arrive at the origin of the coordinates. 
In both cases the function H is of the form 

H = &x2 - h,u + p [U2 + va - Uu21 
Hence, we obtain the following Eqs. on the basis of (2.11) and (2.5): 

_E$x2_2$ 2u=o, aha aha 
1 -3p2-3p++hl=o 

1 
(3.8) 

4, -t_ 2pu = 0, 2pv = 0 (3.9) 

Inequality (2.10) can be written in the form x2u 6 A ,II. On the basis of this relation we 

have 
u @I, $2) = - u. sign A2 (x1, x2) (3.10) 

This relation must be fulfilled in the optimal system. Hence, the problem of synthesis of 
an optimal damper reduces to constructing the multiplier h, =A (xl, x2). Turning now to tbe 
determination of the latter, we construct the function Cp. In the rrst of the above problems it f * 
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ie of the form 

T = Xl” (T) + prs, &J) + pa [Q (GJ - 4 + Ps% (V 3- wo 
while the end conditions cart be written au 

~~l)~* = Pls (haIt*= P2t (W, =--~l(n (~a)~ =-P8 

(H), = - P4, W)* = 0 (3.11) 

Conditions (2.7) indicate that X, and H are continnons on the segment I[+,, Tl. Making 
nse of the ffrst and second conditions of (3.11) we find that instead of p and p2 we can 

attempt to find the values of (XI), and ( h2)to. The latter of conditions (3.11) yields vf), = 

= 0. Allowance for the fact that the problem contaiua the first integral H = const yields the 
important equation 

H 3 0, t E Ita, Tl 
Making use of condition (3.51, we obtain the relation 

(h2)T = 0 (3.12) 

The general solution of Eqs. (3.8) for EL = const is of the form 161 (3.13) 

Wl, %a) = ~~(~~-~~), h2(5, 52) = @2(u- S)i_ q cDr(el+ g) 

Here Gp, and a, are arbitrary functions. In determining them we make use the third con- 

dition of (3.11) and Eq. (3.12). We than have 

QI = - 2 21 (Tf, @, = 0 

Hence, for the function A2 we have 

A, (XL, 3%) = - 2x1 (T)% / u 

This formula solves the problem of optimal damper synthesis. 
On simplifying it we note that on tbc basis of Eqs. (3.1) we may establish the validity of 

the Eq. sign x (T)= sign u provided that u is continuous and has one of the values s =f f&, . 
But then sign i,=.- sign x2, and the synthesizing law is tbe simple formula 

u (2t, 5c.J = U, sign z2 (3.14) 

If we assume that the damper ceasea to function at the instant t = T, so that u = 0 for 

~>T,thenfort>Twehavex,=rt(T),r~= 0. We may, of course, to supply the system 

with an additional damping device which returns it to the origin x1 = X, =! 0. 
In the second of the above problems we assume that both ends of the comparison curves 

are fixed. The function cp is then given by 

rp = zt2ft,)+P1Z~(tl)+P221(t*) + ~~~~(~*) + f-G,+ S%(T) +f%% (9 
Hence, the end conditiona can be written as 

(5,),0 = pz, (&Jo = pa, (hl)* = -Pps, (h2)T =--Pet (w,. = - P4(3.15) 

Eqs. (2.7) are fuifilled at the discontinuity point of the parameter u, while the Erdmann- 
Weferstrass conditions for f = tt are given by Eqs. 

@l)f,_, - @l)t,+o + 21 PI) = 0, (h2)+o- (ha&,+, -I- PI = 0 

w,*, - wt,+fJ = 0 
(3.16) 

Analysis of tbe solutions of Eqs. (3.1) shows tbat if the piecewise-continuous function 
e(t) has a discontinuity at t = t,, then x,(t) does not have a maximum at this point. However, 

by virtue of (3.7) and (3.16) at t = tt we have (x+)&o = (X+)t,+o. Hence, the multiplier h, 
is continuous at t = tt. 

In constructing the synthesizing function we make use of the fact that during optimal opera 
ation the representing point arrives at the origin along the curve 2Uoxt = xz2 for u = -.@ u or 

along the curve - 2uoxt = x2’ for I( = + U,. The equation x2 i: 0 must be fulfilled on these 
curves. 

Now, making use of Formulas (3.13) in the case where a I Vo for r&to, ~1, we obtain 
Expressions 

(f E ito, hl) 
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(t E [k, t*j1 ( fr = 2% + $1 (3.17) 

This reqnfres fuffilhnent of the inequality a, < 0. In the case where the parameter u is 
negative for t&t,, t l ] and a = - [I,, these equations are replaced by 

hz=~,(EP)[-~++~1/~]+~ (t E [to, hl) 

Aa = @I (5%) [- -$ + o&~iq (t E Iti, WI 

Ra = 2x--22* PVO) O (@I > 0) (3.18) 

In simplifying the functions just constructed we recall that x 1< 0 if it is defined by 
Fotn~tlas(3.17) and & > 0 if it is determined from Formulas (3.18). It is clear that these 
inequalities are fulfilled if x2 > 0 in the first of relations (3.17) and if x2 < 0 in tbe first 
Expression of (3.18). These considerations lead to the simple equation 

u = Uu sign 5% ft E I& Gf (3.19) 

In a sfmifar fashion, for tE(ty t *I we obtain 

u = U, sign [x1 + xz2 / 2lJ, sign x,1 (3.20) 

The difficulty which we encounter in using tbcae synthesizing functions consists in the 
necessity of allowing for Eq. rs(tt) = 0 which defines transition from one function to the 
other. It is easy to show, however, that if the parameter u for tE[t,, tt 1 is determined from 
(3.201, then its values coincide with the quantities given by Formula (3.19). Hence, we can 
tahe function (3.20) as the synthesizing function. 

It is interesting that Eq. (3.20) defines the optimal law in the speed-of-response problem. 
Comparison of FormnIas (3.19) and (3.14) shows that the optimal controls in the two prob- 
lems coindde until fulfillment of the relation x t = 0; further changes in the control in the 
second problem occur in accordance with the optimal speed-of-response law. 

4. Let us coneider a system with one degree of freedom acted on by a long pulse. Let 
Eq. 

f(t) = F (t E I&, Q), f(t) = 0 (r>r) (4.1) 

be fulfilled in Eq. (1.1) and let Vu satisfy the inequality II 
notation x = x1, x’= x1, 

< F. After introducing the 
we can rewrite the equation of pro f! lem (1.1) as 
. 

21 = 22, 5, = F- u (q, x8), x1’ = x2, xa’ = - u (q, x2) (4.2) 
Their right-hmd sides have a discontinuity at the point t’= T. We assume the left end of 

the ,omparison curves fixed (see relations (3.2)) and consider the problem of minimizing 
functional (3.4) when Eq. (3.5) is fulfilled. Constructing the function H, we have 

Ii = h,z, -I- h, [F - ul + p lug + U* - &,“I (t E rroz)) 

H = h,x, - h,u + p IZP + va - U,Zl (t>t) 
Equations of the problem for tE[to, 7) can be written as 

ahi 
~r%+~~rIF--LEl =o, 

air 
$$Q+~&(~--a)+hl=O (4.3) 

---?U~+Z#tZZ=O, 2p = 0 (4.4) 

For 8 > T tire corresponding equations are of the form (3.8), (3.9). Analysis of the Weier_ 
strass inequality and relations (3.9) and (4.4) indicates that relation (3.10) muet be fulfilled 
during optimal operation. The boundary conditions for the functions At and h 2 can be found 
using Formulas (2.16) of 141. If we substitute the function cp given by 

P, = $I2 (T) + Pl$ &f + P2 I% K?) - %*I + P3% m c P&J 

and the function 6= t’- 
written in the form (3.11). 

7 into this problem, we find that the boundary conditions can be 
The Erdmann-Weieretrass conditions at the point t = T become 

(%_o - (h&+o = 0, (%o - (k),+u = 0, 
where v is a Lagrange multiplier. 

(~)+.()-- (Q,” + V = 0 (4.5) 

For r > 7 the multipliers At and & are determined as in the previous section. The multi- 
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plier A, is given by Expression h, = - 2rl(T)rz/s. 
Now, conatnmting the genarel aolotion of Eqs. (4.31, we obtain expressions which fol- 

low from Formalaa (3.13) in the replacement of u by Vu - F. The condition a,) 

= Wq+o 

_o = 
then makes it poaaible to construct the solution of the second Eq. of “t 4.3) in the 

form 

hs (Q, $4 = 2 
F-UtJ 
-%(T)Gd U. 

Hence, the ayntheaizing function on the entire segment [to, T] is of the form 
u (Tr, xs) = Vu sign 2z 

This result was obtained for F > 0. It is easy to show that it is also valid in the csse 
F < 0. 
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