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Some problems of optimal damping theory are considered. It is shown that these problems
can be stated in the form of the variational problem of optimal systems synthesis. The nec-
essary steady-state condition and the necessary condition for a strong minimum of the func-
tional for the variational problem of optimal damper synthesis are described. Sample compu-
tations of dampers for syatems with one degree of ireedom are carried out.

1. The equation of a dampable mass with one degree of freedom can be written as fol-

lows | 1):
g+ u(z, 2, t)=f() (1.1)
Here x is the generalized coordinate of the system, f(t) is the specified external force,
and u{x, x°, t) is a function representing the damper characteristic, This function is usually
subject to the limitation

|u(z, 2, ) [<< U, (L2
Let us consider the segment [to. T}, the initial conditions
z (8) = =y, z (t) = o (1.3)
and the functional
J = max |z (t)| (t < [to, T)) (1.9

The optimal damping problem can be formuiated as follows: from among the functions x{¢)
and u(, %', t) satisfying Eq. (1.1) and inequality (1.2) on the segment [¢g, 7] and conditions
21.3) at the left-hand end of this segment we are to find those which minimize functional

1.4).
Since the condition(*)

() =0, 1, &b, T (1.5)
isclates the extremal points of the function x{¢), instead of Expression (1.4} we can consi-
der the functional

J =z () {1.6)

The above problem then assumes a form which is a special case of the following general
problem of synthesis of optimal systems whose functional depend on intermediate coordinate
values L 2],

From among the vector-funetions x(s) = {x,(t),..., x, (¢)} and from the piecewise-continuous
vector functions u(x, &) = {u 1(x, thyaeny 1, (%, tl)} satisfying the differential equations

8= %y —fo(z,u, t)=0 (s=1,....n) (L7
and the finite relations _

V=% (@,t)=0 (k=1,...,r<m) (1.8)
on the segment [zo, T] and the conditions (1.9)

P =@ [Z (L), Lo, T(t1), t1,...,2(T), T]1 =0 (=1, p<{g-t+1)nt+1)—1)
at the ends and intermediate points ¢ = ¢, (i = 1,..., ¢ — 1) of this segment, we are to find
those which minimize the functional

*) The case where x°(t) = 0 on the segment [tl, t2] requires special consideration
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T
J = glz(t), to, z(t1), t1s .., (T), T} + S]‘o(x: u, t)dt (1.10
to
This problem differs from that of constructing optimal processes in that we are required
to find optimal laws u(x, t) rather than u().

2. The necessary steadystate condition for the functional / is of the form [9)

Al =0 (2.1
Here Al denotes the total variation of the functional I represented by the relation
T n
I=—g+\ [2 x,x;——H] dt (2.2)
ty s==1
P n r
=g+ lzlplq)p H=—f0 + 21 }"sfs""kzlp'k‘pk (2.3)
= 8= =

where A, (%, ¢), i, (%, ¢), p, are indefinite Lagrange multipliers. In computing the variation
AT one must take account of the dependence of the functions u,(x, ¢), A (%, t), . (x, £) on
the coordinates x,. Then, for example, thc total variation Au; of the control ux(x, ) can be
written as

n
du
3
Auk = Buk -4 821 be,,
where 8uj, represents the partial variation of the function uy.
Carrying out the manipulations and discussion typical of the calculus of variations (3],
we obtain the steady-state condition in expanded form. It consists
of the partial differential equations

M, < OM oH
4 D -t fot =0 (s=1,...,n) (2.9
ot §1 oz, fa 0z,
of the relations
%’%:0 (k=1,...,m) (2.5)

of the end conditions

o9 - o9 _

Bty + (H)t. =0, (l.),o— 7z () 0

- 50 (s=1,...,n) (2.6)
ar — =0, (Mt ggm=0

of the Erdmann-Weierstrass conditions for the discontinuity points ¢ = t* of the parameters

of the control u, (1)

(H)p_o’_' (H)t'+o =0, ()"a)to_o_ (xs)t.+0 =0 (s=1,...,n) (@D

and of the Erdmann-Weierstrass conditions at the points ¢ = ¢;,
e - o0 _
ET; - (H)ti_o + (H)tﬁ_o - O’ (7"8)11,_0 - (}"‘)trl"o -+ m‘)‘ =0

(i=14,...,.9—4;s=1,...,n) (2.8)
In constructing the optimal functions u,(x, ¢} it is also necessary to make use of Egs.
(1.7) and (1.8), the conditions of continuity of the coordinates

T, (t* —0)— 2, (t* + 0) =0, z,(t;— 0)— x,(£; + 0) = 0

(s=14,...,ni=1,...,g—1) (2.9)
and Egs. (1.9). In order for the necessary Weierstrass condition of a strong minimum of the
functional J to be fulfilled, one must guarantee fulfillment of the steady-state condition and
the Weierstrass inequality; the latter takes the form

H (x’ u, }"1 W, t) > H (m, U, }w, W, t) (2.10)
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Here u(x, ¢) are functions which minimize the functional J, while Ulx, ¢) # u(x, t) are any
admissible functions.

Comparison of Eqs. (2.4) with the corresponding equations of the system A, *+ 3H/0x,
used in the construction of optimal processes [9] shows that in solving the synthesis prob-
lem we are obliged to deal with partial differential equations whose characteristics are
curves satisfying the equations of the variational problem of optimal process construction.

In the case where the functions f, and @, do not depend on time explicitly, the controls

and multipliers A, and 1, must also be found in the form of time-independent functions.
Egs. (2.4) then become

n

2 %, fat oM 0 (s=1,...,7) (2.11)

a
[

.
- vl
a=1 @
Egs. (2.4) or (2.11) can also be used in solving problems of synthesis of optimal systems
described by equations with discontinuous right-hand sides or of systems with bounded co-
ordinates. The only difference occurs in relations (2.8). The corresponding conditions are

given in [ 4 and sl.

3. Let us consider the problem of optimal damping of a mass with one degree of freedom
We assume that an instantaneous pulse is applied to the mass at the initial instant ¢ = ¢4 =
= 0. Then in Eq. (1.1) we have f= 0, and the initial conditions can be written as x(0) = 0,
%'(0) = %, *. On introducing the notation x; = x, x, = x', instead of (1.1) we have

4
8

Ty = Zy g = — U (3.1)
while the initial conditions take the form
z, (0) = 0, 7y (0) = g (%30 = %) (3.2)
We convert to an open range of admissible variations of the controls by constructing the
relation
p=ul 4 '~ U =0 (3.9)

which contains the additional parameter v.

The optimal damping problem will now be considered in two formulations. In the first of

these the functional is written in the form

J = z2(T) (3.9
and falfillment of the Eq.

z (T) =0 (3.5)
is required.

Here we seek the minimum of the extremum of the function xl(t) fort E[to, T] under the
condition that no limitations are imposed on the motion of the system after the extremum has
been attained.

The second formulation is based on the functional

J = z,2(t) (3.6)
and fulfillment of the conditions
Zy(t) = 2, (1) = 2, (T) = 0 (3.7
is required.

Upon termination of the process the system must arrive at the origin of the coordinates.

In both cases the function H is of the form

H = Mz, — Au + p [u? + v® — U?]

Hence, we obtain the following Egs. on the basis of (2.11) and (2.5):

ok oy 9ha I
*6—371—1'-47’;2_11—0’ -%;-zz—wu—{—l.l:() (3.8)
—Ay + 2pu = 0, 2uv = 0 (3.9)

Inequality (2.10) can be written in the form A ,u LA ,U. On the basis of this relation we
have
u (21, Z) = — U sign Ay (24, ) (3.10)
This relation must be fulfilled in the optimal system. Hence, the problem of synthesis of
an optimal damper reduces to constructing the multiplier A, =J\}(x 1 %¥32) Turning now to the

determination of the latter, we construct the function Q. In the lirst of the above problems it
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is of the form
@ = z,2 (T) + P12y () + Pa (25 () — Taol + 0524 (T) + puto
while the end conditions can be written as

(xl)g‘ = P1s (3'3):. = Pas (3.1)1. = —22:(T), (?“B)T =~ 3

(H)t.. = — Pa» (H)T =0 (3.11)

Conditions {2.7) indicate that A; and H are continuous on the segmant [tos T1. Making
use of the first and second conditions of (3,11} we find that instead of p, and p, we can
attempt to find the values of (A}, and (X)), . The latter of conditions (3.11) vields (H)y =
= 0. Allowance for the fact that the problem contains the first integral H = const yields the
important equation

H =0, t e [to, Tl
Making use of condition (3.5), we obtain the relation
(Ar =0 (3.12)
The general solution of Eqa. (3.8) for u = const is of the form 03] (3.13)
Tal 2 . 2
b )= Bt 32 )1 o )= Ot 5§ % Ot
Here (I’i and 4)2 are arbitrary functions. In determining them we make use the third con-
dition of {3,11) and Eq. (3.12), We then have
O, =—22z,(I), ®,=0
Hence, for the function A ; we have
Ay (4, @) = — 22, (T)zy [ u

This formula solves the problem of optimal damper synthesis.

On simplifying it we note that on the basis of Egs. (3.1} we may establish the validity of
the Eq. sign x,({T)= sign » provided that s is continuous and has one of the valuesu =+ Uj.
But then sign }\2 = — sign x,, and the synthesizing law is the simple formula

u (2y, x,) = U, sign z, (3.14)

If we assume that the damper ceases to function at the instant t= T, so thatu = 0 for
t> T, then for t> T we have x, = ,(T), x, = 0. We may, of course, to supply the system
with an additional damping device which returns it to the origin x4 = x,= 0.

In the second of the above problems we assume that both ends of the comparison curves
ere fixed. The function @ is then given by

¢ = 22 (t) - p1Za(ty) Fpa2y(to) + PsZalte) + patot 5ZUT) +pe%y (T)

Hence, the end conditions can be written as

M), =P (M), =03 (Mp=—0s (Rap=—ps (H)y =—0pa(3.15)

Eqs. {2.7) are fulfilled at the discontinuity point of the parameter 4, while the Erdmann-
Weierstrass conditions for ¢ = ¢, are given by Eqs.

(;"1)[,...0—‘ ()“1):‘.1{.0 + 2 (tl) =0, (?"2)‘,-0 d ()“2)g,+0 + o= 0
(H)y_y— (H), 0 =0 (3.16)

Analysis of the solutions of Egs. {3.1) shows that if the piecewise-continuous function
u{t) has a discontinuity at§=t,, then x,(t) does not have a maximum at this point. However,
by virtue of (3.7) and (3.16) at ¢ = ¢, we have ), o = (\gu)y 4o - Hence, the multiplier A,
is continuous at ¢ = ¢,.

In constructing the synthesizing function we make use of the fact that during optimal oper-
ation the representing point arrives st the origin aleng the curve 2Upx; = x23 foru=~Ugor
along the curve — 2U 2, = 2,2 foru =+ U,. The equation A, = O must be fulfilled on these

curves.
Now, making use of Formulas (3.13) in the case where u = U, for tE[to, t*], we obtain

Expressions . N
=) 7+ 5 VB~ et
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1 z?
Ay = @y (&) [-% -+ 7 Vv gll (e [t 1*]) (§1= z +-23,~;> (3.17)
0 .
This requires fulfillment of the inequality (bx < 0, In the case where the parameter u is
negative for tE[to, t*] and y = ~ Uy s these equations are replaced by

Ay = @y (&) [* 7+ _ViTuT, VB_] + & (t € [to, ta])

Ar = Oy (&) [“‘ —g% -+ -V—,—%—'; VE;] (te [y, *])

(Ba=m—22t 200) (®1>>0) (3.18)
In simplifying the functions just constructed we recall that A ,< 0 if it is defined by
Formulas(3.17) and A, > 0 if it is determined from Formulas (3.18). It is clear that these
inequalities are fulfilled if x; > 0 in the first of relations (3.17) and if x, < 0 in the first
Expression of {3.18). These considerations lead to the simple equation

u = Uysign z, (t =t 1)) (3.19)
In a similar fashion, for tE€(t,, ¢*) we obtain
u = U,sign [z, + z,2 ] 2U, sign x,] (3.20)

The difficulty which we encounter in using these synthesizing functions consists in the
necessity of allowing for Eq. %4(¢1) = 0 which defines transition from one function to the
other. It is easy to show, however, that if the parameter u for tG[to, %, )is determined from
(3.20), then its valnes coincide with the quantities given by Formula {3.19), Hence, we can
take function (3.20) as the synthesizing function.

It is interesting that Eq. (3.20) defines the optimal law in the speed-of-response problem.
Comparison of Formulas (3.19) and (3.14) shows that the optimal controls in the two prob-
lems coincide until fulfillment of the relation %, = 0; further changes in the control in the
second problem occur in accordance with the optimal speed-of-response law.

4. Let us consider a system with one degree of freedom acted on by a long pulse. Let

Eq.
f@y=F (€] 1), fiO=0 (> (4.1
be fulfilled in Eq. (1.1) and let U, satisfy the inequality Uy < F. After introducing the
notation % = %, %"= x,, we can rewrite the equation of proglem (1.1) as
z, = x,, Zy = F — u (2, ), 2, = 3, &y = — u (g, ) (42
Their right-hand sides have a discontinuity at the point t“= 7. We assume the left end of

the _omperison curves fixed (see relations (3.2)) and consider the problem of minimizing
functional (3.4) when Eq. (3.5) is fulfilled. Constructing the function H, we have

H = Mxy + Ay [F — ul 4 p [u? + 0* — U2] (t € [41)
H=;‘l1x2"“xgu+” [u2+vz— UOZ] (t>1)

Equations of the problem for t=I[¢y, 7) can be written as

A iy a\
Mot PF—u)=0, o+ P F—w)+h=0 4

— A+ 2pu =0, 2w =0 (4.4)

For¢> 7 the corresponding equations are of the form (3.8), (3.9). Analysis of the Weier

strass inequality and relations (3.9) and (4.4) indicates that relation (3.10) must he fulfilled

during optimal operation. The boundary conditions for the functions A, and A, can be found
using Formulas (2.16) of [4]. If we substitute the function @ given by

@ = 2,2 (T) + p12y (bo) + P2 [22 (85} — Za0] + pazs (T) + o4ty
and the function %=t — 7 into this problem, we find that the boundary conditions can be
written in the form (3.11). The Erdmann-Weierstrass conditions at the point ¢ = 7 become
M)eg— (M)ye =0, (Ma) ,—(ha), ;o =0, (H) _o— (H),,,+v="0(4.5
where v is a Lagrange multiplier.
For ¢> T the multipliers A; and A, are determined as in the previous section. The multi-
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plier A, is given by Expression A, = — 2x,(T)x,/u.

Now, constructing the general sclution of Egs. {(4.3), we obtain expressions which fol-
low from Formulas (3.13) in the replacement of u by Uy ~ F. The condition (A))y, o=
- O‘z)ﬁﬂ) then makes it possible to conatruct the solution of the second Eq. of {4.3) in the

orm
Mg (21, 29) = 2 F;;Uo

Hence, the synthesizing function on the entire segment [y, 7] is of the form
u (g, z4) = U, sign z,
This result was obtained for F > 0. It is easy to show that it is also valid in the case
F<o.

zy (T) zs
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